
Unix Fundamentals
Dr. Christoph Bauer

Sep 2018

Page 2

Preface

◼ When we talk about "Unix," we usually include "Linux," too.

◼ The first release of this course was written in 2004 and had a focus on Sun
Solaris 8. Since then Linux-based systems became more and more popular,
therefore we will also spend some words about (Red Hat/Fedora) Linux.

◼ During this course we will learn basic commands whose syntax and options
are mostly identical in all Unix flavours. Differences will be pointed out (but
be aware that the author might not have found all differences…).

◼ For interactive use we concentrate on the Bourne Again Shell (bash).

◼ Shell prompt in command examples: $

◼ Commands and terminal output are written in Courier font. Optional
input is surrounded by []. Placeholders for e.g. file names are written in
italic font. When a new command is introduced the first time, it is
written coloured.

Page 3

Architecture

◼ Unix is an interactive, time-sharing operating system (OS).

◼ Core of the OS: the kernel
The kernel manages the utilisation of hardware resources (CPU, memory, I/O devices,
physical storage, ...) by all running programs.

◼ Every piece of software running on the OS (except most of the kernel
systems) is represented as a process.

◼ Some running processes waiting for actions to take are called "daemons."
Daemons lie dormant until certain events occur that trigger an action.

◼ Interfaces between users and system: shells (these are yet other processes)

◼ A graphical user interface (GUI) is not considered being part of the OS.
GUIs are made up of a server (the "X server") managing the I/O resources (mouse, keyboard
and graphical output devices) and clients (programs using the graphical capabilities of the
system).

Page 4

Login with PuTTY

◼ PuTTY application: "Session" window

Host name (must
be resolvable by your
PC) or IP address

Define a name for the
PuTTY session

Load stored session
(attention: save your
changes first!)

Save session, settings
will be stored under the
name entered above

Further settings
here, to make life
easier…

Page 5

Login with PuTTY

◼ PuTTY application: "Connection" – "Data"

Enter user name which
shall be automatically
logged in

Page 6

Login with PuTTY

◼ PuTTY application: "Connection" – "SSH" – "Auth"

Choose private SSH key
from file on disk

Press "Open" after you
have made (and saved)
all settings

Page 7

Login with PuTTY

Local PuTTY configuration on Windows PC

◼ The PuTTY settings are stored in the Windows Registry.

◼ Export PuTTY settings to a file on the Desktop: enter
regedit /e "%userprofile%\desktop\putty-registry.reg"

HKEY_CURRENT_USER\Software\Simontatham

in the command window or Windows Powershell.

◼ Import the settings on another PC: right-click the generated .reg file and
choose "Merge" ("Zusammenführen") from the menu.

Use the tool PuTTYGen for key generation and management and conversion of key
pairs generated with ssh-keygen to PuTTY key format (ppk) and vice versa.

Page 8

Accessing a Unix system
◼ You can use ssh to log in to another system at the command line:
ssh [-l newuser] [-X] hostname

◼ Users are authenticated via user name and password either stored in
/etc/passwd and /etc/shadow or in an IAM (Identity and Access
Management) system's passwd database (e.g. LDAP).

◼ The login shell is read from passwd:
cbauer:x:43277:30403:Bauer;Christoph…:/home/cbauer:/bin/ksh

The login shell reads its standard initialisation files for setting the
environment from the user's home directory.

◼ Log out with the exit command.

◼ -X option: X11 forwarding

UID GIDUser name Home directory Login shell

x means password is
stored in shadow file

GECOS field (comment,
can contain any char-
acter except ':')

Page 9

Accessing a Unix system

◼ The ssh login can be configured such that no password is required. A
public/private key pair is required. Generate one on command line:
ssh-keygen –t type [-f outputfile]

◼ You can define a "passphrase" which, if set, must be entered instead of the
password. It provides additional security.

◼ Key type can, for example, be rsa or dsa (encryption method).

◼ By default, RSA keys are stored in $HOME/.ssh/id_rsa[.pub], DSA
keys in $HOME/.ssh/id_dsa[.pub]. Be careful not to overwrite
existing key files! (ssh-keygen asks for the output file name if not
specified with -f.)

◼ On the target host (to which you want to log in using ssh), the public key
must be included in the $HOME/.ssh/authorized_keys file.
$ cd ~/.ssh

$ cat id_rsa.pub >> authorized_keys

Page 10

Accessing a Unix system

◼ What is the operating system of the host I am logged in on?
uname -a

◼ Output for Solaris 10 system
SunOS host01 5.10 Generic_150400-55 sun4v sparc sun4v

◼ Output for Red Hat Linux system
Linux host02 2.6.32-696.13.2.el6.x86_64 #1 SMP Fri Sep 22

12:32:14 EDT 2017 x86_64 x86_64 x86_64 GNU/Linux

◼ On Solaris systems, the OS release can be found in /etc/release, on
Linux systems you can query /proc/version or /etc/os-release.

Page 11

Accessing a Unix system
◼ The xterm command (example) opens a new terminal window:

xterm -ls -sb -sl 2000 -bg antiquewhite -fg black

-title "cbauer host01" -n "cbauer host01"

-geometry 130x40+20+20 &

◼ Options used in the example above:
-ls shell that is started in the window is a login shell
-sb display scrollbar and save lines scrolled off the top
-sl ... save this number of lines scrolled off the top (def.: 64)
-bg ... background colour (https://en.wikipedia.org/wiki/X11_color_names)

-fg ... foreground colour
-title ... title string displayed in the window border
-n ... name string displayed in the icon when minimised
-geometry <cols>x<rows>+x+y

◼ Typical location is /usr/bin (Red Hat) or /usr/openwin/bin (Solaris).

◼ On your host/PC, an X Windows Server must be installed and running, e.g.
XMing (Windows) or one of the Unix/Linux X Servers such as Gnome or KDE.

Page 12

Exchanging data between Windows PC and Unix hosts

◼ WinSCP is a graphical frontend for Secure FTP (SFTP).

Choose "SFTP" protocol
and port 22

Enter all data required
for the login: user name,
password and remote
host name

If you're using an SSH key,
configure it here ("SSH" –
"Authentication")

Page 13

Exchanging data between Windows PC and Unix hosts

◼ Files can be dragged and dropped between PC (left) and remote Unix host
(right).

Page 14

Shells
You can always invoke another shell than your login shell; choose one of:

◼ Bourne Shell (sh) – the oldest and simplest shell with the least features, but
available almost everywhere and still widely used in system administration

◼ Korn Shell (ksh) – an extension to the Bourne Shell

◼ Bourne Again Shell (bash) – another extension to the Bourne Shell

These shells are not available everywhere (depends on installed packages), but are worth
mentioning:

◼ C Shell (csh) – a shell with C-style programming syntax (incompatible with Bourne and Korn
Shell),

◼ Tenex C Shell (tcsh) – an extension to the C Shell,

◼ Z Shell (zsh) – often considered as being the shell with the most features.

◼ Almquist Shell (ash) – another extension of sh, lightweight, e.g. for embedded Linux
systems

This course will concentrate on bash. Although they sound like, rsh ("remote
shell") and ssh ("secure shell") are no shells.

Page 15

User environment

◼ Immediately after login, you have a specific environment.

◼ Most settings are stored in initialisation files:
◼ System-wide initialisation files, depending on your login shell

◼ Personal initialisation files, depending on your login shell

◼ Settings can be: (environment) variables, aliases, functions, resource
limitations, defaults for specific commands (e.g. chmod: the umask value)
or shell-specific option settings.

Side note: almost everything in Unix is case-sensitive!

Page 16

User environment

Variables store values which are referenced by names

◼ Some variables are automatically set by the shell (e.g. PWD), some are set by
the system (e.g. PATH, MANPATH, ...).

◼ Use = to assign a value to a variable.

◼ Access to variable contents: $VAR or ${VAR}
E.g., $HOME is the contents of the variable HOME.

◼ Use the echo command to display contents of a variable.

◼ Example for variable usage:
$ PATH=/usr/bin:/usr/local/bin

$ echo $PATH

/usr/bin:/usr/local/bin

$ echo "The PATH is: $PATH"

The PATH is: /usr/bin:/usr/local/bin

$ PATH=$PATH:/opt/Acrobat5/bin

Page 17

User environment

◼ Variable names may contain alphanumeric characters and _.

◼ Remove (unset) a variable: unset VAR

◼ Display all variables: set

◼ Set an environment variable: export VAR[=value]

Environment ("global") variables are inherited by child processes and
subshells.

◼ Display all environment variables: typeset -x

export

env

◼ Switch between env./local variable: typeset ±x VAR

(typeset -x VAR is identical with export VAR)

Page 18

User environment

The PATH variable

◼ Example: PATH=/usr/bin:/usr/local/bin

◼ The PATH variable tells the shell where to search for commands.

◼ The PATH directories are searched from left to right; the first executable
found is used.

◼ Executable is not in the search PATH: use relative or absolute path name:
$./mycommand

$ /home/usera/mycommand

Page 19

The Unix password
◼ The password can be modified using the passwd command.

◼ If the password is stored in an external IAM system, it may be required to use its GUI.

◼ The encoded password is stored in /etc/shadow (not readable for non-root
users) or the shadow IAM (e.g. LDAP) database; encoding is a one-way function.
The encoding algorithm is the same for all Unix versions.

◼ Default (minimum) password rules for Solaris environments (maybe outdated)
◼ all characters on the keyboard (except the Return key) may be used,

◼ the password is case-sensitive (beware of pressed CAPS LOCK key!),

◼ the password must be at least 6 characters long,

◼ only the first 8 characters are significant (even though more may be typed),

◼ within the first 6 characters there must be at least two letters and one special or numeric
character.

◼ Other Unix flavours or your site-specific setup may enforce additional rules or
periodic modification of the password ("password aging").

Page 20

Getting help

Manual pages

man [-s section] [-M path] command

◼ Examples:
man ls

man -s 3head signal

◼ Search path for man pages: MANPATH variable

◼ Browse the man page with:
space one page forward

b one page backwards

[n]return scroll forward n lines (default 1)
/pattern search forward for pattern

n search next occurence of pattern

q quit

Page 21

Getting help

Manual pages

◼ Sections (selected):
◼ 1 User commands and application programs

◼ 1m System administration commands and daemons (Solaris)

◼ 2 System calls and error numbers

◼ 3 Functions and libraries

◼ 4 File formats (Solaris), devices and special files (Red Hat)

◼ 5 Miscellaneous, e.g. standards, env, macros (Solaris), file formats (Red Hat)

◼ 6 Games and demos

◼ 7 Special files (Solaris), miscellaneous (Red Hat)

◼ 8 System administration tools and daemons (Red Hat)

◼ 9 Device driver interfaces (Solaris)

◼ Sections may contain subsections, e.g. 3head or 3lib.
Sections may be referred to, like in "see termio(7i)".

Page 22

Getting help

Manual pages

◼ Introduction to a section:
man [-s section] intro

◼ If more than one man page for the same topic (command or file name,...) is
available, man will display the one which is found first by scanning the
subdirectories of the MANPATH directories.

◼ Search for a topic/man page:
apropos string

man -k string

(requires that windex files are available → contact your system
administrator if you get error messages)

◼ Brief description only: whatis command

Page 23

Unix commands

The general synopsis of using a command is:
command [options] [arguments]

Every command is

◼ an executable file located in the directory tree (binary, script),

◼ a shell-builtin function,

◼ a user-defined shell function or

◼ a shell alias name for another command.

A command returns an (integer) exit status to the parent command; by
convention, 0 means "success", >0 (up to 255) some error. Use echo $? in
order to check the latest return code.

Page 24

Unix commands

◼ Executable files are searched in the directories listed in the PATH variable;
the first executable file found matching the command name is executed.

◼ Files in directories that are not in PATH must be called with their path name
(absolute, e.g. /usr/ucb/whoami, or relative, e.g. ../ucb/whoami).
An executable or script in the current directory can only be executed if either
. is part of the PATH variable or ./ is prepended.

◼ Use the which command to see which binary executable is used. Example:
$ which cd

/usr/bin/cd

which does not show whether an alias or a shell-builtin with that name exist - these would
take precedence over the binary executable! The Korn Shell has a built-in command whence
combining the functionality of which with alias and shell-builtin information. Or you use the
type command, available in ksh and bash.

Page 25

Unix commands

◼ Options normally have a leading - character, as in
ls -a -l -i -s

◼ Several options can be combined with one leading -, as in
ls -lisa

◼ Some options may require their own arguments, as in
ssh -l cbauer remote1

◼ Arguments are passed to the command as additional information input;
beware that the shell may change argument values if the arguments contain
shell metacharacters (e.g. *).

Page 26

Basic commands

◼ Display who I am: id [-a], who am i or whoami
(on Solaris whoami is located in /usr/ucb.)

◼ Display the host I am on: hostname or uname -a

◼ Display the current date and time: date

◼ Display how long a command execution takes: time , as in e.g. time date

◼ Display a calendar: cal [[month] [year]]

◼ Display who else is logged on: who

◼ Display who was logged on at what time: last [username]

◼ Display the current session's pseudo terminal: tty

◼ Clear the screen: clear

◼ Go to sleep: sleep secs

◼ A simple calculator: bc (CTRL-d to exit)

Page 27

Basic commands

◼ Use the ls command to list the contents of directories.
Common options:
-a list all entries, including those starting with . ("hidden files")
-l long format
-R recursively list subdirectories
-d if argument is a directory, list its name, not its contents (often used with -l)
-F mark special files with special characters (e.g. directories with a trailing /)
-i print inode number for all entries
-n same as -l, except that UID and GID are given instead of user/group name
-s for every entry, print size in blocks1

-t sort by time stamp instead of by name (default last modification time)
-c use time of last inode modification for sorting (-t) and printing (-l)
-u use time of last access for sorting (-t) and printing (-l)
-r reverse the order of sorting

1The block size depends on the type of file system used and its
method of allocating space on the disk

Page 28

Basic commands

◼ Example:
$ ls -li /usr/bin/cp

456248 -r-xr-xr-x 3 root bin 26852 Aug 14 2000 /usr/bin/cp

File type

File permissions
(owner, group,

other)

Hard link
counter

Time of last
modification

of file contents

File
name

User name
of file owner

Group name of owning group

File size in bytes

Inode
number

(not shown
without -i option)

Page 29

Files in Unix

◼ Logically: a stream of data with a beginning and an end
("end of file" EOF, represented by CTRL+d)

◼ Physically: a set of disk blocks (sectors) in a file system (on a disk)

◼ Every file has an inode associated with it which stores:
◼ owner and owning group, access permissions,

◼ file type (directories are merely a special type of file!) and size,

◼ number of hard links to the file (file names),

◼ time stamps: last modification, last access, last modification of inode,

◼ locations of data blocks on the physical storage.

◼ There is no concept of "extension-based" file types like in Windows, at least
on terminal/shell level.

◼ Files and directories starting with . are not displayed by ls by default, only
if the option -a is given: "hidden files".

Page 30

Hard and symbolic links

◼ Hard links: several names for one physical file (no special file type)
ls -l command: the link counter indicates the number of hard links.
All the names point to the same inode (physical address in file system).

◼ Soft or symbolic links: special files that point to other objects (similar to
"links" = "Verknüpfungen" in Windows)

◼ Create a hard [or symbolic] link with the ln command:
ln [-s] orig_file link_file

◼ Example:
$ ln testfile testfile2

$ ln -s testfile testfile3

$ ls -li

466616 -rw-r--r-- 2 cbauer cbauer 94 Jan 19 08:35 testfile

466616 -rw-r--r-- 2 cbauer cbauer 94 Jan 19 08:35 testfile2

466556 lrwxrwxrwx 1 cbauer cbauer 8 Jan 19 08:36 testfile3 -> testfile

$ rm testfile

Page 31

Directory structure

◼ All files are organized in a single coherent directory tree. Typical Sun Solaris
tree:

/

etcdev devices export home kernel mnt net opt platform proc sbin tmp usr var

bin ccs dt include java kernel lib local openwin perl5 sbin share

adm apache crash spoollog nis ypldap sadm

SUNW... VRTS... oraclefuzzy Acrobat5informix containerd

Page 32

Directory structure

◼ Directories are merely lists of file (and directory) names.

◼ Absolute path names: /opt/oracle/product/11201_cl_64

/opt

/

◼ Relative path names: product

./product/11201_cl_64

◼ Every directory may contain an arbitrary number of subdirectories and files.

◼ . is a reference to the current directory, as in ./product

◼ .. is a reference to the parent directory, as in ../../opt

◼ Every directory contains . and ..
(for the / directory .. is a reference to itself)

Page 33

Directory structure

◼ Change directory using the cd command: cd [dir]
cd /opt/oracle/product

cd ../..

◼ cd without arguments takes you to your home directory
($HOME is the standard argument to cd).

◼ cd . takes you nowhere. You stay where you are.

◼ Determine the current directory with the pwd command ("print working
directory").

◼ The shell provides a PWD variable; read its contents, e.g., with
echo $PWD.

Page 34

Important standard directories

◼ bin is a standard subdirectory for executables, as in /usr/bin,
/usr/local/bin, ...

◼ lib is a standard subdirectory for shared libraries (and other shared data),
as in /usr/lib, /usr/local/lib, ...

◼ man is a standard subdirectory for man pages, as in /usr/share/man.

◼ include is a standard subdirectory for header files (*.h), as in
/usr/include .

◼ /dev and (Solaris) /devices contain device special files for I/O to devices.

◼ /etc contains system-wide configuration files.

◼ /export (Solaris) is a standard directory for things to be exported to other
systems, e.g. via NFS (home directories etc.).

◼ /root is the exclusive home directory of the root user.

Page 35

Important standard directories
◼ /home is a standard system directory for local or NFS-mounted home dirs.

◼ /kernel and /platform (Solaris) or /boot and /lib/modules (Red
Hat) contain the OS kernel and kernel modules.

◼ /bin is a link to /usr/bin in Solaris, on Red Hat /bin contains basic
commands required at all system run levels.

◼ /lost+found is a standard directory where the Unix file system check
(fsck) puts lost data found during the check.

◼ /mnt is a standard system directory where file systems (e.g. NFS) are
mounted.

◼ /net is a standard system directory for "browsing" NFS servers.

◼ /opt ("optional") is a standard directory for "optional" software packages,
often used for commercial third-party software.

◼ /proc is a virtual (in-memory) storage for process structures and details,
used by programs such as ps

Page 36

Important standard directories

◼ /sbin is for system administration commands and daemons that must be
available during system boot.

◼ /tmp is a storage for temporary data, volatile (in virtual memory) on Solaris,
on disk on Red Hat.

◼ /usr ("Unix system resource") contains static software and data.
◼ /usr/bin binaries for user commands

◼ /usr/sbin binaries for system administration commands

◼ /usr/dt (Solaris) components of the Common Desktop Environment

◼ /usr/openwin (Solaris) X11 binaries and Open Windows components

◼ /usr/include header files

◼ /usr/lib shared libraries

◼ /usr/share shared data (man pages, libraries, ...)

◼ /usr/ucb (Solaris) Berkeley (BSD) compatibility stuff

◼ /usr/ccs (Solaris) some things used in SW development

Page 37

Important standard directories

◼ /var ("variable") is for non-static data (logs, protocols, system accounting, mails,
print spooler files, on-disk temporary data).
◼ /var/adm system administration data (message files, logs, ...)

◼ /var/log log data

◼ /var/mail incoming mails for local Unix users (outgoing go through
/var/spool/mqueue)

◼ /var/spool "spooled" data (print jobs, mails, software packages, ...)

◼ /var/run storage space for the OS, in Solaris this is volatile (in memory)

◼ /var/tmp on-disk (non-volatile) temporary storage for user data

Page 38

Manipulating files and directories

Copy a file or directory

cp [opts] source[s] destination

◼ No. of args > 2: destination must be a directory, all source objects are copied to
there.

◼ Common options:
-r recursive, copy a directory and all its contents
-R same as -r, except that pipes are replicated, not read from
-p preserve owner and group, permissions and time stamps
-i interactive: ask before overwriting a target (not default!)

◼ Copying directories requires use of the -r or -R option.
If the destination directory already exists, a subdirectory will be created within there
whose name is source.

Page 39

Manipulating files and directories

Move (rename) a file or directory

mv [opts] source[s] destination

◼ No. of args > 2: destination must be a directory, all source objects are moved
to there.

◼ Directories move with all their contents (no "recursive" option).

◼ Common option:
-i interactive: ask before overwriting a target (not default!)

Page 40

Manipulating files and directories

Delete (remove) a file or directory

rm [opts] object[s]

◼ Objects are normally regular files, although rm can also remove symbolic
links, files of other types, and (with the recursive option) even directories.

◼ Common options:
-i interactive: ask before overwriting (not default!), recommended
-r recursive (use with care and caution); required for directories
-f remove write-protected files without prompting

◼ There is no undo for a remove operation! There is no "wastebasket!" A
backup must be restored in case of accidental removal.

Page 41

Manipulating files and directories

Create an empty file or update time stamps

touch [opts] object[s]

◼ If the objects do not exist, touch will create empty files.

◼ If an object already exists, the access and modification time stamps will be
updated with the current system time.

◼ Common options:
-a change the access time of the file only
-m change the modification time of the file only
-c do not create a file if it does not exist
-r file use the time stamps of file instead of the current time
-t [[CC]YY]MMDDhhmm[.ss] set explicit time stamp

Page 42

Manipulating files and directories

Create a new empty directory

mkdir [opts] directory

◼ Use the -p option to create a full path, e.g. mydir1/mydir2.

Remove an empty directory

rmdir [opts] directory

◼ Use the -p option to remove a directory and its parent directories (directories

must recursively become empty in order for rmdir to be successful, meaning that there
must not be any remaining files in subdirectories).

Page 43

Displaying files

Display file type

file file[s]

Display file contents

cat [opts] file[s]

◼ Normally used for text files (ASCII data files, log files, scripts etc.)

◼ Common options
-n precede each output line with its line number
-v print non-printable characters visibly (see man page)
-ve print $ char at the end of each line (Red Hat: -e)
-vt print tabs as ^I and form-feeds as ^L (Red Hat: -t)
-u unbuffered output (for fast copies; Solaris only)

Page 44

Displaying files

◼ Redirect output to another file: for example
$ cat file1 file2 > file3

(can be used to combine several files into one, e.g. after splitting a file with
the split command; works with text or binary files)

Display printable character sequences in a (binary) file

strings file

(sometimes useful to obtain information about the contents, purpose or nature
of a binary file)

Page 45

Displaying files

Display file contents

more [opts] file[s]

◼ Normally used for text files (ASCII data files, log files, scripts etc.)

◼ Most often used without options
(options see man page)

◼ Keys for scrolling and searching:
space one page forward

b one page backwards

[n]return scroll forward n lines (default 1)

/pattern search forward for pattern

n search next occurence of pattern

q quit

Page 46

Displaying files

Display file contents

less [opts] file[s]

◼ Normally used for text files (ASCII data files, log files, scripts etc.)

◼ Most often used without options
(options see man page)

◼ Keys for scrolling and searching: similar to man and more

◼ less is similar in functionality to more, but less knows a lot more
interactive key commands than more (see man page); e.g. ? for searching
backwards.

◼ With the PAGER variable, /usr/bin/less may be defined as alternative
pager command for the man command.

Page 47

Displaying files

Display the beginning or the end of a file

head -n file[s]

tail ±n file[s]

◼ n indicates a number of lines to display; default 10.
-n display the first/last n lines
+n display from the nth line up to the end (tail only; Solaris only)

◼ tail is often used on log files in the form
tail -f file

("follow mode"): tail does not exit after displaying the current end of the
file but waits for additional lines to be appended to the file and displays
them in an instant.

Page 48

Displaying files

View binary files: "octal dump"

od [opts] file

◼ Useful for binary files for which cat or more merely display rubbish

◼ Common options
-a or -t a interpret bytes as named characters
-b or -t o1 interpret bytes in octal
-c or -t c display single-byte characters

(non-printable chars as 3-digit octal numbers)
-x or -t x2 display words (2-byte units) in hex

(more formatting options see man page)

Page 49

Displaying files

Count bytes, words (delimited by white space/newline) and lines in files

wc [opts] file[s]

◼ Common options
-l display line count only
-c display byte count only (including newlines!)
-w display word count only

wc without options displays line, word and byte count.

Page 50

Comparing files

diff [opts] file1 file2

◼ Compares two ASCII text files

◼ Common options
-b ignore trailing white space (spaces and tabs) and treat

other white space sequences as equivalent

-i ignore case of letters

-w ignore all white space (spaces and tabs)

-r recursive, compares all files in directories (Red Hat)

Page 51

Comparing files

sdiff [opts] file1 file2

◼ Compares two ASCII text files, with one on each half of the screen;
differences are indicated by >, < and | in the middle between the files.

◼ Common option
-s ignore identical lines

cmp [opts] file1 file2

◼ Compare files byte by byte, can be used for ASCII and binary files.

◼ Display all differences (decimal byte number, octal differing bytes): cmp -l

Page 52

Comparing directories

dircmp [opts] dir1 dir2

◼ Compares the contents of two directories file by file

◼ Common option
-s do not list identical files in the report

◼ dircmp is only available on Solaris; both on Solaris and Red Hat diff -r
serves a similar purpose.

Page 53

Shell basics (bash)

The prompt variable

◼ The shell prompt can be customized.

◼ Assign the shell variable PS1.

◼ bash provides a set of specific control sequences for prompts.

◼ Example:
PS1="\u@\h:\w \d \t \nEnter command: "

yields the prompt:
cbauer@host01:/etc Thu Mar 25 16:40:04

Enter command:

Page 54

Keys for command line editing when using the shell interactively:
◼ Cursor Left and Right: move through the line

◼ Cursor Up and Down: scroll up and down through command history

◼ CTRL+a, CTRL+e: jump to beginning/end of line

◼ ESC+f, ESC+b: jump forwards/backwards word by word

◼ CTRL+d or "Entf" key: delete character at cursor position

◼ Backspace key: delete character before cursor position

◼ CTRL+l: clear the screen (keeping the current command line)

◼ CTRL+r, CTRL+s: search history backwards/forwards (terminal CTRL+s must be turned off)

◼ Tab key: automatic command and file completion

◼ CTRL+c: interrupt command without execution and return to prompt

More command line editing key combinations exist. Note that bash must be in "emacs mode" (set
–o emacs) when you want to use the key combinations above, alternative would be set –o vi
for vi-style command line editing. The same options apply for the Korn Shell.

Shell basics (bash)

Page 55

Shell basics (bash)

Shell options are parameters that control the behaviour of the shell.

◼ Switch on a shell option: set -o option

◼ Switch off a shell option: set +o option

◼ Display all current option settings:set -o

◼ bash options are, for example:
noclobber Overwrite protection on > redirection
ignoreeof Shell does not exit on CTRL+d
emacs emacs-style command line editing (with cursor keys)
noglob Turn off expansion of shell wildcards (* etc.)

Page 56

Shell basics (bash)

Initialisation files

◼ Initialisation files permanently store variable definitions, shell option
settings, aliases, prompt variables etc.

◼ Login bash shells read:
/etc/profile - system-wide
$HOME/.bash_profile, $HOME/.bash_login, $HOME/.profile
(the first one of these three that exists and is readable is used).

◼ Interactive bash shells which are not login shells read:
$HOME/.bashrc.

◼ "Source" a specific profile file interactively or from another file:
. filename

(requires leading ./ when . is not in the PATH variable; source can be used, too)

Page 57

Shell basics (bash)

Input/output redirection

◼ By default, processes take input from keyboard (stdin, file descriptor 0) and
write output and errors to the screen (stdout, 1; stderr, 2).

◼ Redirect input (read from file): <
mailx -s "Subject" "christoph.bauer@vodafone.de" < message.txt

◼ Redirect output (write to file): > (overwrite) or >> (append)
ls -lR > outfile

ls -lR >> outfile

◼ Redirect error output (write to file): 2>
ls -lR 2> /dev/null

/dev/null is a pseudo device that discards the output if it is of no interest.

◼ Redirect output and errors:
grep cbauer file1 >/dev/null 2>&1

Page 58

Shell basics (bash)

Input/output redirection

◼ When using >, files are overwritten (by default)!
Switch on overwrite protection: set -o noclobber
Switch off: set +o noclobber
Bypass protection: use >| instead of >

◼ Pipeline (or "nameless pipe"): combine two processes such that output of
first process is input to second process

ps -ef | grep cbauer

cat message.txt | mailx -s "Subject" "christoph.bauer@vodafone.de"

ps -ef | tee outfile | grep cbauer

The tee command writes the input from the first pipe into the file and, at the same time,
passes it on into the next pipe. Hence it works like a "T junction."

Page 59

Shell basics (bash)

Pipelines, lists and groups

◼ Pipeline: singular command or sequence of commands separated by |

◼ List: sequence of one or more pipelines separated by
; strictly sequential execution
& asynchronous execution

(shell does not wait for a pipeline to finish before starting next)

&& next list is only executed if preceding list returns exit code 0
|| next list is only executed if preceding list does not return 0

◼ {list} simply execute list (used to group commands)
Example: {ls .; ls ..; cat file1} > outfile

◼ (list) execute list in a separate environment (used to group
commands with modified effective settings)

Example: (cd subdir; ls -lR)

Page 60

Shell basics (bash)

Shell metacharacters

◼ Before executing a command, the shell tries to substitute all path and file
names that contain metacharacters.

◼ Important metacharacters for file name substitutions:
* any sequence of arbitrary characters (including none)
? exactly one arbitrary character
[chars] exactly one of these chars (range: e.g. A-Z or 0-9)
[!chars]exactly one char, but not one of the specified
\ masks the following character (loses its special meaning)

◼ Directory name metacharacters (tilde and dash expansion):
~ your home directory
~user home directory of user
- the last working directory (before the last cd)

Page 61

Shell basics (bash)

Quoting and command substitution characters

◼ Sometimes character sequences must be quoted so that the shell does not
interpret special characters.

◼ ' ' mask all special chars except '

◼ " " mask all special chars except " \ ` $

' and " mask each other.

◼ \ masks a single char (including newline: mask end-of-line).

◼ ` ` command substitution: the command is executed and its
output is inserted (substituted)

Example: PATH=$PATH:`pwd`

◼ $() command substitution (alternative)

Page 62

Shell basics (bash)

Aliases

◼ Aliases are useful shortcuts for often used commands

◼ alias [name[='cmd [options]']]

◼ Show [all] aliases: alias [name]

◼ unalias name

◼ Aliases are not exported to sub shells (use .bashrc).

◼ Use the original command if it has been overwritten by an alias with the
same name: prepend it with \, e.g. \rm –rf mydir.

Page 63

Searching text in files
Commands: grep, egrep, fgrep

[e,f]grep [opts] 'searchstring' file[s]

◼ "grep" stands for "Global Regular Expression Parser" (or "Globally search for a
Regular Expression and Print if found").

◼ grep is the regular form of grep.

◼ egrep means "expression grep" (an alternative to grep).
egrep may be faster, but also more memory-consuming. In Red Hat, egrep is linked to
grep and functionally identical with grep -E. egrep uses a different regular expression
set.

◼ fgrep means "fixed grep".
fgrep can only search for fixed character sequences, it does not perform any regular
expression pattern matching. Therefore it is faster than grep and egrep. In Red Hat, fgrep
is linked to grep and functionally identical with grep -F.

◼ Quoting (' ' or " ") of the search string is recommended.
Otherwise the shell may interpret some of the RE metacharacters.

Page 64

Searching text in files

◼ Simple examples of using grep:

grep 'Bauer' /etc/passwd

grep '[Bb]auer' /etc/passwd

grep '[Bb]...r' /etc/passwd

grep '[Bb].*r' /etc/passwd

grep '^[Bb]...r$' /etc/passwd

grep '^[Bb]...r\$$' /etc/passwd

grep '[A-Z][a-z]..r' /etc/passwd

Page 65

Searching text in files

◼ Common options of grep:

-n show line numbers

-i ignore case of letters

-v show all lines that do not contain the search pattern

-l show only names of files that contain the search pattern

-c count the lines that contain the pattern

Page 66

Regular expressions

◼ Combinations of ASCII characters, some of which have special meanings

◼ Important special characters (metacharacters):

Within [] the special characters . * [and \ lose their meaning.

Symbols Meaning

. exactly one arbitrary character

* preceding character arbitrarily often (including
none)

^ beginning of line

$ end of line

\ masks the one following character

[-] exactly one from this list (range) of characters

[^ -] exactly one character, but not from this list (range)

Page 67

Searching for files

find dir[s] [condition[s]] [action[s]]

◼ dir[s]: where to search (by default: including subdirectories)

◼ condition[s]: a set of conditions that must be satisfied

◼ action[s]: actions that are performed for all objects found

◼ If no condition is given, all objects will match.

◼ The default action is to list path names of matching objects.

◼ Actions are merely special conditions, i.e. an action yields a Boolean value,
too, which depends on the return value of the command.

◼ For a comprehensive list of all conditions and actions see man page.

Page 68

Searching for files

find dir[s] [condition[s]] [action[s]]

◼ Conditions: true if...
-name pat object's name is pat (shell patterns allowed)
-atime n object was last accessed n days ago
-ctime n object's inode was changed n days ago
-mtime n object was last modified n days ago
-newer file object was modified more recently than file
-inum n object's inode number is n
-links n object has n links
-user name object is owned by user name
-group name object is owned by group name

Page 69

Searching for files

find dir[s] [condition[s]] [action[s]]

◼ Conditions: true if...
-perm [-]on object's perm. flags match octal number on
(with the preceding -, only those bits that are set in on are compared with flags)

-size n[c] object's size is n blocks (512 byte; c: bytes)
-type t object's type is t (one of f, d, b, c, l, p, s)

◼ Conditions can be combined with -a (AND) or -o (OR).
Logical expressions can be parenthesized (\(\)).
-a is the default, simply listing conditions means AND implicitly.
! means a logical NOT.

◼ Numerical values:
+n means "more than n", -n means "less than n".

Page 70

Searching for files

find dir[s] [condition[s]] [action[s]]

◼ What does mtime ±n mean?
Consider 24-hour periods, take no notice of the midnight break between
days.

now: 19th Jan,
09:12

18th Jan,
09:12

17th Jan,
09:12

16th Jan,
09:12

15th Jan,
09:12

0 or -1123

+0

+1 -2

+2 -3

Page 71

Searching for files

find dir[s] [condition[s]] [action[s]]

◼ Actions
-print simple path name output (default action)
-ls detailed output, format like ls -lid
-exec cmd \; execute cmd for every object found;

command arg {} is replaced by current object.
-ok cmd \; like -exec, but user confirmation required
-exec and -ok yield true when the exit status of cmd is 0.

◼ Example:
find /home/cbauer -type f -name '*core*' -exec rm {} \; -ls

(Red Hat Linux: -ls must be before –exec rm, error message otherwise)
Note: before executing such a command, it is always good to check which files would be
affected, by running find without the –exec option.

Page 72

Editors

Several editors are available in Unix:

◼ ed, ex are single-line editors (similar to edlin in MS-DOS)
ex is a superset of ed.

◼ vi is a terminal-fullscreen ("visual") editor based on the functionalities of
ex; it is the standard Unix editor everyone should be able to use.

◼ nano is another simple text editor which became popular in the Linux world.

These editors are not included in Unix (Solaris) by default:

◼ vim ("vi improved") is an enhanced vi. On Linux, vim is usually started
when vi is entered.

◼ emacs is another display-based editor; runs as a terminal-window based
version or within its own graphical window; a variant delivered with some
programming IDEs is xemacs.

◼ dtpad and nedit are examples of graphical editors.

Page 73

The vi editor

Startup: vi [file]

Three modes of operation

Input mode
type your text here

Command mode
scroll through the text,
remove or insert

Last line mode
special commands
save file or quit here

ESC or command execution

ESC

:

i,I,r,R,
a,A,o,O,
cw, ...

you can hit ESC as often as you like, to be sure

Page 74

The vi editor

0 - beginning of line

^ - first non-
whitespace char

$ - end of line

1G or H - first line ("home")

G or L - last line

k - one line up

j - one line down

CTRL+u - half a page up

CTRL+d - half a page down

n G - jump to line n

l - char right

w - word right

h - char left

b - word left

CTRL+b - page up

CTRL+f - page down

Page 75

The vi editor

Entering input mode from command mode

i enter input mode at current cursor position

I enter input mode at beginning of current line

a enter append mode after current cursor position

A enter append mode after end of current line

o open new line after current one and enter input mode there

O open new line before current one and enter input mode there

r replace one single character

R enter replace mode, starting with current cursor position

cw replace chars from current cursor position up to end of word

Except with r, you have to type ESC to return to command mode.

Page 76

The vi editor

Command mode commands (cont.)

When typing a preceding number n, a command is repeated n times.

dd delete current line to general buffer

dw delete word (from cursor position) to general buffer

D delete to end of line (from cursor)

x delete single character (at cursor)

p paste general buffer after cursor (current line)

P paste general buffer before cursor (current line)

J join current and next line into one line

Page 77

The vi editor

Command mode commands (cont.)

When typing a preceding number n, a command is repeated n times.

Y yank current line to general buffer

yw yank word (from cursor position) to general buffer

~ toggle lower-/uppercase character by character

. repeat last change

u undo last change

U undo all changes on current line

CTRL+g display current line number and file information

CTRL+l redraw screen

ZZ save changes and exit (as :wq, see below)

Page 78

The vi editor

Last line mode commands

:w write current editor contents to current file

:w name write current editor contents to file name

(does not change the current file to name!)

:wq or ZZ or :x write to current file and quit

:q! quit without saving

:!cmd execute shell command cmd

:r file read file and insert its contents after current line

:r !cmd execute shell command cmd and put output after

current line

:e file load file as new editor contents to edit

Page 79

The vi editor

Last line mode commands

:m,ntx copy lines m to n after line x

:m,nmx move lines m to n after line x

:m,nd delete lines from m to n

Page 80

The vi editor

Search text

/text search for text or regular expr. (forward direction)

?text search for text or regular expr. (backward direction)

n search next

N search next in reverse direction

Search and replace: general syntax
:[address]s/old_text/new_text/[g]

address indicates the range of lines

old_text text (or regular expression) to be replaced

new_text text to be inserted instead

Page 81

The vi editor

Search and replace

Line addressing:

◼ Explicit line number or [g]/pattern/ (regular expression match; g means
all lines containing the pattern)

◼ [addr1],[addr2] indicates a range of lines (first or last omitted: current
line automatically inserted), . is the current line, $ is the last line and %
addresses all lines in the document.

◼ An appended g means that all occurrences of the text on a line are replaced
(otherwise only the first occurrence would be considered).

◼ new_text may start with &: append new_text to old_text.

Page 82

The vi editor

Search and replace: examples

:2,5s/cb/CB/

→ on line 2 to 5, replace the first cb with CB

:5,$s/cb/CB/g

→ on all lines from the 5th to the last, replace all cb with CB

:%s/CB/&AUER/g

→ in the entire document, append AUER to all CB

:g/CB/s/^123/456/

→ on all lines that contain the string CB, replace 123 at the beginning of the line
with 456

Page 83

The vi editor

Last line mode commands: editor settings

:set number show line numbers

:set autoindent autoindent after carriage return (CTRL-d to go back)

:set showmode display current mode on last line of screen

:set list show invisible characters

:set tabstop=n define tabstop positions

:set all show current values of all parameters

:set parameter is turned off with :set noparameter

Store your personal parameter config in $HOME/.exrc

Page 84

File permissions

Viewing file permissions
$ ls -l testfile

-rw-r--r-- 2 cbauer cbauer (...) testfile

The first block in this output is file type and permissions (user/owner, owner
group and "others" = "rest of the world").

◼ Files: r file contents can be read and displayed
w file contents can be modified
x file can be executed as a command

◼ Directories: r dir contents can be read and displayed (ls)
w directory contents can be modified (creation and

deletion of files and subdirectories)
x operation on the directory and its

subdirectories is allowed

Page 85

File permissions

◼ After authentication (login or switch UID), every access to an object is
allowed or denied based on file permissions.

◼ Authentication is performed based on user names, access permissions are
granted based on numerical UID/GID.

◼ The root user (and only the root user), UID 0, is allowed to do (almost)
everything on the system, independent of access permissions!
"With great power comes great responsibility."

Page 86

File permissions

Modifying file permissions

chmod [opts] permissions file[s]

◼ Common option: -R for recursive (all files and subdirectories)

◼ Symbolic mode: u for user/owner, g for group, o for others, a for all, r/w/x
for particular permissions, + or - to grant or remove a permission, = to set
all permissions at once
Examples:
chmod u+rwx file1

chmod g-w file2

chmod g+x,o+rx dir1

chmod a=rw file3

◼ You can only use chmod on your own files, only root can change all files’
permissions.

Page 87

File permissions

Modifying file permissions

chmod [opts] permissions file[s]

◼ Octal modes:
1) Map each of r/w/x in a triple to a binary digit
2) Set this binary digit to "1" for all granted permissions
3) Translate the resulting three binary numbers to octal

◼ Examples:
chmod 755 dir1

chmod 644 file1

Page 88

File permissions

Umask value

umask octal_perms

◼ Used to specify default permissions for new files and directories.

◼ umask identifies (in octal mode) which permissions are removed from the
system default, which is
for files: rw-rw-rw- (666),
for directories: rwxrwxrwx (777).

◼ Examples:
umask 0: new files rw-rw-rw-, new dirs rwxrwxrwx
umask 022: new files rw-r--r--, new dirs rwxr-xr-x
umask 077: new files rw-------, new dirs rwx------

◼ umask is normally set in initialisation files such as .profile.

Page 89

File permissions

Change owner

chown [-R] user object[s]

Change owning group

chgrp [-R] group object[s]

◼ chgrp can only be used when the user is the owner of the object and also a
member of the destination group. chown can only be used by root.

◼ -R for recursive mode (include all files and subdirectories)

◼ Determine (your) group memberships (primary, secondary) with
groups [username]

id -a [username]

Page 90

File permissions

Switch UID

[sudo] su [-] [username] [-c command]

◼ Changes UID and GID (for login or, with -c, command execution)

◼ With the - argument, username's profile is read and effective and the su
session starts in username's home directory; without this argument, the
current directory and environment remain unchanged.

◼ command (optional) is executed within the su session.

◼ In many settings, su – is bound to sudo mechanism in order to switch to
root user without having to type in the root password. Type sudo -l to
check which commands have been allowed to you with sudo privileges.

◼ As root user, you can su to any other user without entering the password.

◼ Successful and unsuccessful attempts of using su are logged by the system.
Site rules may forbid to use su to switch to another personal user identity!

Page 91

Process and job control

Display processes

ps [opts]

◼ Without options, ps displays only processes that have the same effective
UID and the same controlling terminal as the invoker of ps.

◼ ps generates a snapshot view of running processes.

◼ Common options:
-e list information about every process now running
-f generate a "full" listing (detail information)
-l generate a "long" listing (detail information)

◼ ps can be used to display processes of specific groups (-G), process IDs (-
ps), terminals (-t) or users (-u, -U) .

Page 92

Process and job control

$ ps -ef | head -7

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Oct 24 ? 0:07 sched

root 1 0 0 Oct 24 ? 362:30 /etc/init -

root 2 0 0 Oct 24 ? 2:34 pageout

root 3 0 0 Oct 24 ? 475:26 fsflush

root 2212 1 0 Oct 24 ? 0:00 /usr/lib/saf/sac -t 300

cbauer 632 623 0 07:14:00 pts/4 0:00 -ksh

EUID

Process ID (PID)
Parent Process ID (PPID) Start time

Controlling
terminal

CPU utilisation
for scheduling

(obsolete) Cumulative
execution time

(min:sec)

command
name

Page 93

Process and job control

Search for processes

ps [opts] | grep name [| grep –v grep]

pgrep [opts] name

◼ pgrep is available since Solaris 7 and works similar to
ps ... | grep ...

◼ Common options to pgrep
-l long output (not only PID, but also process name)
-u user all processes for user

Page 94

Process and job control

Signals

◼ Signals are notifications of events to running processes.

◼ Termination due to signal receipt: exit status = 128 + signal value

◼ A process may block or handle a signal appropriately.

◼ A process cannot block or handle SIGKILL and SIGSTOP.

◼ Generate signals to processes with the kill or pkill command:
kill [-[s]signal] PID[s]

pkill [-signal] pattern

◼ The default signal is 15 (SIGTERM) for both commands.

◼ pkill reduces the awkward "ps ... | grep .../pass output to kill" to one
single command - use with care and caution!

Page 95

Process and job control

Signals

◼ Important signals (see signal(3head) for Solaris or signal(7) for Red Hat):
Name No Def. Act. Description

SIGHUP 1 Exit Hangup

SIGINT 2 Exit Interrupt (CTRL+c)

SIGQUIT 3 Core Quit (CTRL+\)

SIGFPE 8 Core Arithmetic Exception

SIGKILL 9 Exit Kill

SIGBUS 10 Core Bus Error (Solaris)

SIGSEGV 11 Core Segmentation Fault

SIGTERM 15 Exit Terminate

SIGUSR1 16 Exit User Signal 1

SIGUSR2 17 Exit User Signal 2

SIGSTOP 23 Stop Stop (signal; CTRL+s)

SIGTSTP 24 Stop Stop (user; CTRL+z)

SIGCONT 25 Ignore Continue (CTRL+q)

Page 96

Process and job control

Job control

◼ In Unix terminology a job is merely a command line of commands (may be
several processes) invoked interactively from a shell.

◼ Job states: foreground, background or stopped
(not to confuse with process states)

◼ By default jobs are running in the foreground (the shell is blocked).

◼ Start in the background: append an & sign, as in:
/usr/openwin/bin/xterm &

(the assigned job ID and the PID are displayed)

◼ Put a job into the background:
1) Send a TSTP signal with CTRL+z
2) Run the bg command

Page 97

Process and job control

Job control

◼ The jobs command shows the current shell's jobs

◼ Refer to a job with %job_id (the number shown by jobs):
kill %1

bg %3

◼ Put a job to the foreground (default: last job that was put to bg)
fg [%job_id]

◼ Stop a job: kill -STOP %job_id

◼ Reactivate a stopped job: bg %job_id or fg %job_id

Page 98

Process and job control

Job control

◼ Background jobs terminate when the user exits from the invoking shell; the
shell may prohibit the exit and notify the user of running or stopped jobs.

◼ Start a job so that it continues to run after exit:
nohup cmd &

(by default output goes to nohup.out; you may have to type exit twice
to leave the shell)
nohup tells the shell's children to ignore the SIGHUP signals sent by the
exiting shell.

◼ Continuing background jobs are inherited by init (PID 1) when the shell
exits.

Page 99

Process and job control

Control-key sequences in terminals (see termio(7i) on Solaris,
termios(3) on Red Hat)

◼ CTRL+c: interrupt (SIGINT), forces a process to terminate immediately

◼ CTRL+d: end of file (EOF), sometimes used to end an input stream
CTRL+d exits a shell (use set -o ignoreeof in ksh and bash to deactivate this
behaviour)

◼ CTRL+\: quit (SIGQUIT), forces a process to terminate immediately
(same as CTRL+c except that CTRL+\ forces a core dump)

◼ CTRL+z: stop (SIGTSTP), stops a foreground process without blocking the
terminal (shell)

Page 100

Process and job control

Control-key sequences in terminals (see termio(7i) on Solaris,
termios(3) on Red Hat)

◼ CTRL+s: stop (SIGSTOP), stops a foreground process and blocks the terminal
(shell)

◼ CTRL+q: continue (SIGCONT), resume STOPped process
(give it a try and type CTRL+q when your terminal appears to be frozen - you may
inadvertently have typed CTRL+s)

◼ CTRL+v: special meaning of next control character is ignored
(useful for input of control sequences in files – for example, for setting stty erase, see
below)

◼ CTRL+h: backspace
CTRL+?: delete
Use stty erase ^H or stty erase ^? to define/change the erase key

Page 101

Remote access

◼ Execution of a networking-related command requires a translation of the
host name to an IP address.
Check IP address translation:
grep hostname /etc/hosts

getent hosts hostname

nslookup hostname[.domain]

◼ A network service requires a server process to run on the server host.

◼ Is the other host accessible via network (i.e. remote system is up and the
network routing works)?
ping [-s] remotehost

On Red Hat, ping works as ping -s on Solaris. Note: some firewalls may restrict ICMP
message exchange, hence ping might not work.

◼ Is a certain service available via network?
telnet remotehost [port]

Page 102

Insecure remote access

◼ telnet remotehost

remote login session; telnet is an OS-independent standard.

◼ ftp remotehost

file transfer (interactive session); FTP is an OS-independent standard.

◼ rlogin [-l other_user] remotehost

◼ rcp [remotehost:]/file [remotehost:]/file

◼ rsh [-l other_user] remotehost command

◼ The "r tools" are typical for Unix; their application, and that of telnet and
ftp, is not recommended (and, often, not permitted anyway) due to
security weaknesses. They transfer unencrypted traffic!

Page 103

Secure remote access

◼ ssh [-l other_user] remotehost [command]

encrypted remote login session or command execution; instead of –l
other_user you may also type other_user@remotehost.

◼ scp [[other_user@]remotehost:]/file

[[other_user@]remotehost:]/file

encrypted remote file copy

◼ sftp [other_user@]remotehost

encrypted file transfer (interactive, works similar to ftp)

Page 104

Secure remote access

sftp example

$ sftp cbauer@remote1

Connecting to remote1...

sftp> ls

(...)

sftp> put testfile

Uploading testfile to /home/cbauer/testfile

sftp> get testfile2 testfile

Fetching /home/cbauer/testfile2 to testfile

sftp> quit

$

Page 105

Archiving and compressing

gzip file[s]

gunzip file.gz [file.gz ...]

◼ gzip compresses file by file and appends .gz to every file.

◼ gzcat file.gz sends the file uncompressed to stdout (display) but
leaves it compressed on disk. (Red Hat: use gunzip –c file.gz
instead.)

compress file[s]

uncompress file.Z [file.Z ...]

◼ compress compresses file by file and appends .Z to every file.

◼ zcat file.Z sends the file uncompressed to stdout (display) but leaves it
compressed on disk.

Page 106

Archiving and compressing

zip [opts] file.zip file[s]

unzip [opts] file[.zip] [file[s]]

◼ zip compresses all files and stores the compressed data in one zip file.

◼ The ZIP format is compatible with PC ZIP formats (PKZIP, winzip, 7zip, ...).

◼ Common option to zip: -r for "recursive," used for directories
Example: zip -r home.zip ./*
It is recommended to archive using relative path names, in order to avoid
access permission problems during extraction.

◼ Common option to unzip: -l for "list archived files" (no actual extraction)

Page 107

Archiving and compressing

tar [opts] [tarfile.tar] file[s]

◼ One and the same command for archiving and extracting

◼ Common options:
Action: one of c (create), x (extract), t (TOC=list), u (update), r (replace)

v verbose
f file name of the tarfile

◼ Examples
tar cvf home.tar .

tar tvf home.tar

tar xvf home (extraction is always relative to current dir)

◼ It is recommended to archive using relative path names, in order to avoid
access permission problems during extraction.

Page 108

Finally: some useful commands worth noting

◼ Send HTTP(S) request to web server: curl

◼ Download a file via HTTP(S) or FTP from a web server: wget

◼ Mount file systems, for basic users: check mounted file systems: mount

◼ Total, used and available space of file systems: df [-h] [directory]

◼ Sum up file and directory sizes: du [-sh] [file(s)]

◼ Sync files and directories between hosts: rsync

◼ Trace system calls and signals: truss (Solaris) or strace (Red Hat)

◼ Check shared libraries which would be included (is my LD_LIBRARY_PATH
variable set correctly?): ldd

See man pages to find out how to use these commands.

Page 109

Finally: some useful commands worth noting

◼ Monitor running processes and their resource consumption: top

◼ Monitor system performance: iostat, vmstat, sar, mpstat, …

◼ Show network interfaces: ifconfig [-a]

◼ Show network connections, open ports, routing tables, …: netstat [-arn]

◼ Check and trace IP routing to remote destination: traceroute

◼ Query a DNS server: nslookup

◼ Copy files or devices byte by byte: dd

See man pages to find out how to use these commands.

